
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 15, 571-578 (1992) 
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SUMMARY 
A three-dimensional second-order closure dispersion model is used to simulate the plume behaviour of 
a passive contaminant in a convective boundary layer. A time-splitting finite element method together with 
a non-linear filtering scheme is used to solve the three-dimensional second-order closure transport equa- 
tions. The model results show good agreement with laboratory data for a ground level source. 
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INTRODUCTION 

The pioneering laboratory convection tank experiments by Deardorff and Willis’ and Willis and 
Deard~rff’-~ showed that plume dispersion in convective boundary layers depends on the source 
height. For the case of near-ground emissions the plume ‘lifts off from the ground and forms an 
elevated maximum concentration close to the inversion layer. For the case of elevated sources the 
plume ‘descends’ and forms a local ground level maximum at a certain downwind distance. Wind 
tunnel experiments’ and field data6 further confirmed the laboratory results. This unusual 
behaviour of plume dispersion is due to the skewness of the vertical velocity in convective 
boundary layers.’. * 

Recent Eulerian modelling attempts of atmospheric diffusion have been using the higher-order 
closure approach. Today, second-order closure models are the only time-averaging models that 
can describe the turbulent diffusion in convective boundary  layer^.^-'^ The main advantage with 
the second-order closure approach is that it incorporates the physics of the dispersion problem in 
much greater detail than the commonly used Gaussian plume model and the K-diffusion (eddy 
diffusivity) model. However, second-order closure dispersion models contain more differential 
equations than K-diffusion models. Therefore second-order closure models require more CPU 
time and storage. This seriously limits their repeated use for practical applications. In order to 
develop practical second-order closure dispersion models, we need to consider the following two 
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factors: (a) the parametrization of higher-order terms must be simple, yet capable of capturing the 
essential plume behaviour; (b) the numerical algorithm must have a fast turnaround time. These 
two factors have guided our present work of developing a three-dimensional second-order closure 
dispersion model to predict mean pollutant concentration in convective boundary layers. 

Currently, there is limited work on three-dimensional second-order closure modelling of 
turbulent diffusion, although recent preliminary results from two-dimensional studies are very 
promising.’-’* Earlier work by Lewellen and Teske’ showed that their second-order closure 
model could predict a rather weak plume ‘lift-off phenomenon (without an elevated local 
maximum) for a near-ground source. More recently, EngerI4 used a second-order closure model 
to simulate dispersion from a point source in unstable and stable conditions. In Enger’s model the 
scalar/pressure gradient covariance is parametrized according to Lumley’ and the third-order 
correlation is modelled by a gradient diffusion approximation. However, the plume ‘lift-off and 
‘descending’ phenomena were not shown. 

In this paper, Donaldson’s’6 model is used for the parametrization of scalar/pressure gradient 
covariance terms and third-order correlations. We demonstrate that Donaldson’s model can 
describe the plume behaviour in convective boundary layers. Furthermore, we show how the 
time-splitting finite element method reduces a three-dimensional problem to a sequence of locally 
one-dimensional problems, thus avoiding the numerical solution of an extremely large sparse 
matrix system for each time step. 

SECOND-ORDER CLOSURE MODEL EQUATIONS 

Consider the transient dispersion of a passive contaminant from a point source in a horizontally 
homogeneous convective boundary layer. The three-dimensional ensemble-averaged transport 
equation describing this process is 

(1) -+ u -+ v-=- +-+- 
where C is the mean concentration, U and V are the mean wind velocity components in the x- and 
y-directions respectively and E, VC and WC are the turbulent fluxes in the x-, y- and z-directions 
respectively. In order to solve this equation, we have to know the turbulent fluxes. We will 
therefore introduce the three-dimensional ensemble-averaged transport equations for UC, iz and 
wc. In the transport equations for the turbulent fluxes, several higher-order terms must be 
modelled. The following guidelines, based on Donaldson’s model, are used in the modelling of 
various correlation terms: (a) the molecular terms are neglected in comparison with the other 
terms of the equation; (b) the third-order velocity correlation is modelled using the gradient 
diffusion approximation; (c) the pressure gradient-velocity correlation is decomposed into a pres- 
sure diffusion term and a tendency-towards-isotropy term; (d) the dissipation terms are modelled 
by assuming that the small-scale turbulence structure is isotropic; (e) only the vertical transport 
terms are retained in the equations for the second-order correlations. With the assumption of 
horizontal homogeneity in the mean flow variables, Reynolds stresses and turbulent heat fluxes, 
we can write transport equations for the three components of turbulent mass fluxes as 

ac ac ac a(-* q-3 a(-- 
at a x  ay ax aY a Z  ’ 

- 

-+U-+V-=-UU--UV--UW--WC-+- ( A2q- z)-@)uc, (2) 
auc auc auc -ac -ac -ac -au a 
at a x  ay ax ay aZ aZ az 
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awc awc a i z  ac -ac -ac - -+u-+v-=-iiii--~w--w~-+ce - 
at ax ay ax ay aZ (0,) 

+ - a (,,, q g)  + ;(A3q z) - @) wc. 
aZ (4) 

The equation for the vertical turbulent flux WC introduces the covariance of concentration and 
temperature, c6. Since it is a second-order moment, we must write a transport equation for 
c6. Treating the terms in the equation for the covariance c8 in a way similar to the turbulent mass 
fluxes, we get 

- 

- 

- - - ( !$r+)c8. ( 5 )  
ace ace ace -ac -ac -ac -ao a - + + - + v - = - u e - - v e - - ~ e - - ~ c - + -  A2q- 
at ax ay ax ay a2 aZ aZ 

In equations (2)-(5), q ( =mi’2) is the turbulent velocity, w. is the Reynolds stress tensor, a 
are the components of the heat flux and g is the acceleration due to gravity. The length scales A, 
A2 and A3 are due to modelling of the higher-order terms. A, b and s are model constants. The 
choice of length scales and model constants will be discussed later. 

The left-hand sides of equations (1)-(5) contain the temporal derivatives and the advection 
terms of the five unknown variables. The first four terms on the right-hand side of equations (2), 
(3) and (5) and the first three terms on the right-hand side of equation (4) are the production terms. 
The fourth term on the right-hand side of equation (4) is the buoyancy production term. The fifth 
terms on the right-hand side of equations (2)-(5) are the results of parametrizing the gradients of 
third-order correlations. The sixth term on the right-hand side of equation (4) is the approxima- 
tion of the pressure diffusion term. Since we have retained only the vertical transport terms, the 
pressure diffusion term does not appear in equations (2), (3) and (5). The last terms on the 
right-hand side of equations (2)-(4) are model representations of the tendency-towards-isotropy 
term. The last term on the right-hand side of equation (5 )  is the parametrization of the dissipation 
term for the covariance of concentration and temperature. 

A Gaussian distribution for C was used as the boundary condition to approximate the point 
source: 

where X is the downwind distance at which the boundary condition is applied. This is done to 
avoid singularity at x=O. Thus the values of the concentration calculated by equation (6) for 
a point source projected at C(X = 300 m, y=O, z=zs )  are the boundary values for the simulation. 
The horizontal and vertical standard deviations a,,(i) and u,(2) respectively at a distance i are 
obtained from Willis and Deard~rff.’-~ At the top of the boundary layer we have used the 
following boundary conditions: 

- ac - - awe -=o, uc=o, vc=o, -=o, ce=o. az aZ 
At the surface the boundary conditions are 

(7) 



574 P. PA1 AND T. T. H. TSANG 

The length scale A is obtained from Sun:’O 

A=0.25 { 1.8 zi[l -exp(-4z/zi)-0-0003 exp (8z/zi)]} (9) 
for unstable stratification and 

0*76[E/(g/@) (de/d~)]”~,  A < Az 
A > A z  

for stable stratification, where zi is the inversion height, z is the vertical height and Az is the grid 
size in the vertical direction. The other length scales are specified as 

The values of the constants A =0*75, b=0125, s= 1.8, c2 =0.3 and c3 = -0.3 are based on 
Lewellen and Teske’s second-order closure model.’ ’ 

A TIME-SPLITTING FINITE ELEMENT METHOD 

The Galerkin finite element method with linear basis function and its variants such as 
Taylor-Galerkin and Petrov-Galerkin methods are commonly used in air pollution model- 
ling.’8-20 For convective transport the Galerkin finite element method retains the peak value of 
the concentration distribution very well and requires less CPU time and minimal memory 
storage. However, the use of formal finite element methods for equations (1)-(5) requires 
numerical solutions of a large sparse matrix for each time step. For such a three-dimensional 
problem the number of unknowns is often of the order of 105-106. Currently, numerical solutions 
of such a large matrix system prove to be difficult and challenging. Therefore we use a time- 
splitting technique to reduce the three-dimensional problem to the following three locally one- 
dimensional problems. 

X-direction equations 

ac ac a ( - q  
at ax ax) -+u-=- 
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Y-direction equations 

575 

Z-direction equations 

Equations (13)-(17), (18)-(22) and (23)-(27) are the governing transport equations for C, 
uc, uc, wc and c8 in the x-, y- and z-directions respectively. The three sets of equations were solved 
sequentially and the five equations within each set were solved simultaneously. 

The Crank-Nicolson scheme and the Galerkin finite element method with linear basis func- 
tion are used to discretize equations ( 1  3)-(27). The resulting block tridiagonal systems are solved 
by TRIDBLOK, an implementation of the standard block tridiagonal system solver at the 
University of Kentucky. To improve the performance on the IBM 3090-6005, we have also used 
the vector versions of the ESSL subroutines DGBF and DGBS (ESSL is the Engineering and 
Scientific Subroutine Library by IBM). 

It is well known that use of the Galerkin finite element method with linear basis function for 
convective diffusion equations creates negative concentrations in regions of sharp gradients. 
These negative concentrations are erroneous and lead to numerical instability for chemical 
reactive flows in air pollution modelling. Therefore it is desirable to use a filter which removes 
negative values of concentration without significantly affecting the filtered function. A popular 
filtering technique is to set the negative concentrations to zero at each time step. However, this 

--- 
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type of filtering procedure does not conserve the total mass. We have used a simple non-linear 
filter2’ which completely eliminates the negative concentration, conserves the total mass and 
retains the maxima and shape of the concentration field relatively close to the original. 
Bartinicki” applied the filter to numerical solutions of the advection equation calculated by 
a pseudospectral method. Here we apply the filter to the time-splitting finite element method. It 
suffices to say that the filtering scheme works satisfactorily for equations (13)-(27). 

RESULTS AND DISCUSSION 

The grid system used in the present study has 39 grid points in the x- and y-directions with 
Ax = Ay = 100 m and 53 grid points in the vertical direction with Az = 25 m. The three-dimen- 
tsional time-splitting finite element method determines five unknowns per grid point per time 
step, which amounts to approximately 403 OOO unknowns per time step. We have used At = 2 s for 
all simulations, with the steady state simulation requiring lo00 times steps. The mean variables U, 
V and 0 and the turbulence fields of meteorological variables, which include ii& and a, are 
obtained from Wyngaard and Cote” at 14:00 EST during day 33 of Wangara experiments and 
serve as inputs to the three-dimensional diffusion model, equations (1)-(5). The x-direction in 
Wyngaard and Cote’s’’ model is aligned along the surface layer wind direction, which shows 
a much larger x-component (U, x 2.2 m s- ’) of the mean wind in the bulk of the mixed layer. The 
y-component is almost negligible except at the top of the mixed layer. The results of simulations 
are expressed in terms of dimensionless variables defined by C* = Czf U,/Q, X = xw*/U,zi, 
Y=y/zi and Z=z/zi, where C*, X, Y and 2 are the dimensionless concentration, downwind 
distance, cross-wind distance and vertical height respectively. U ,  is the mean wind speed in the 
convective boundary layer, w* is the convective velocity scale, zi is the inversion height and Q is 
the source strength. The convective velocity scale is given by ~ * = ( a g H ~ z ~ ) ’ / ~ ,  where a is the 
coefficient of thermal expansion and H o  is the kinematic heat flux near the surface. At 14:OO EST 
Wangara day 33 the convective boundary layer was fully developed with zi = 1100 m. 

Figure 1 compares the dimensionless cross-wind integrated concentration obtained from the 
laboratory experiments of Willis and Deardorff’ and the second-order closure model for a near- 
ground source, z,/zi =0*067 (z,  = 75 m). The dimensionless cross-wind integrated concentration is 
defined by 

C $ =  C * ( X ,  Y, 2)dY. rm 
The second-order closure model predicts an elevated concentration maximum at a height of 
about Z=O.9 near X=2.0. The location of the elevated maximum from the laboratory experi- 
ments (2 = 0 8 ,  X = 1.5) differs from the simulated results as seen in Figure. 1. This could be due to 
the treatment of the overlying stable boundary layer above inversion. Furthermore, in the 
laboratory  experiment^^-^ there is no mean wind present, but the results are presented in terms 
of a uniform mean wind along the x-axis by using Taylor’s hypothesis. Willis and Deardorffz3 
showed that the Taylor hypothesis is valid and streamwise diffusion is negligible if the ratio 
U,/w, is greater than 1.2. It should be mentioned that even at this lower limit of 1.2 the 
streamwise diffusion effect was rarely observed in their experiments. In our simulations the ratio 
U,/w,  is 1.1 which is close enough for justifiably neglecting the diffusion terms. Furthermore, 
EngerI4 shows that there is very little difference in the result if the horizontal transport terms (i.e. 
horizontal gradients of third-order correlations, which give rise to horizontal diffusion terms after 
closure) are included in the model. For the sake of brevity it suffices to say that the model results 
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Figure 1. Steady state contours of dimensionless cross-wind integrated concentration as a function of dimensionless 
downwind distance and dimensionless vertical height from (a) Willis and Deardorffs experiments and (b) the second- 

order closure model. The source is at 75 m 

also capture the plume behaviour of elevated sources in convective boundary layers described in 
Willis and Deardo~fT.~ .~  

CONCLUSIONS 

In this paper we have demonstrated that the second-order closure model can describe the plume 
behaviour in convective boundary layers. Furthermore, the time-splitting finite element method 
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can provide reliable results without having to solve an extremely large sparse matrix for each time 
step. 

ACKNOWLEDGEMENTS 

This work was partially supported by the Center for Computational Sciences at the University of 
Kentucky and the U.S. Army Chemical Research and Development Engineering Center. 
Computations were performed at the University of Kentucky and the Cornell National Super- 
computing Facility. 

REFERENCES 

1. J. W. Deardorff and G. E. Willis, ‘A parameterization of diffusion into the mixed layer’, J. Appl. Meteorol., 14, 

2. G. E. Willis and J. W. Deardorff, ‘A laboratory model of diffusion into the convective planetary boundary layer’, Q. J. 
R. Meteorol. SOC., 102,427-445 (1976). 

3. G. E. Willis and J. W. Deardorff, ‘A laboratory study of dispersion from an elevated source within a modeled 
convective planetary boundary layer’, Atmos. Enuiron., 12, 1305-131 1 (1978). 

4. G. E. Willis and J. W. Deardorff, ‘A laboratory study of dispersion from a source in the middle of the convective mixed 
layer’, Atmos. Enuiron., 15, 109-117 (1981). 

5. M. Poreh and J. E. Cermak, ‘Diffusion in an atmospheric layer with an elevated inversion’, in R. H. Kohl (ed.), Proc. 
1985 Scientijc Con$ on Obscuration and Aerosol Research, U.S. Army Chemical Research and Development 
Engineering Center, Aberdeen Proving Ground, MD, 1986, pp. 113-1 15. 

6. W. R. Moninger, W. L. Eberhard, G. A. Briggs, R. A. Kropfli and J. C. Kaimal, ‘Simultaneods radar and lidar 
observations of plumes from continuous point sources’, Preprints 2Ist Radar Meteorology Con$, American Meteoro- 
logical Society, Boston, MA, 1983, pp. 246-250. 

7. R. G. Lamb, ‘Diffusion in the convective boundary layer’, in F. T. M. Nieuwstadt and H. Van Dop (eds), Atmospheric 
Turbulence and Air Pollution Modeling, Reidel, Boston, MA, 1982, pp. 159-230. 

8. J. C. R. Hunt, J. C. Kaimal and J. E. Gaynor, ‘Eddy structure in the convective boundary layer-new measurements 
and new concepts’, Q. J. R. Meteorol. SOC., 114, 827-858 (1988). 

9. L. Enger, ‘A. higher order closure model applied to dispersion in a convective PBL‘, Atmos. Enuiron., 20, 879-894 
(1986). 

1451-1458 (1975). 

10. W. Y. Sun, ‘Air pollution in a convective boundary layer’, Atmos. Enoiron., 20, 1877-1886 (1986). 
11. W. Y. Sun, ‘Numerical study of dispersion in the convective boundary layer’, A t m s .  Enuiron., 23, 1205-1217 (1989). 
12. P. Pai and T. H. Tsang, ‘A finite element solution to turbulent diffusion in a convective boundary layer’, Int. j .  nwner. 

13. W. S. Lewellen and M. E. Teske, ‘Second-order closure modeling of diffusion in the atmospheric boundary layer’, 

14. L. Enger, ‘Simulation of dispersion in moderately complex terrain-Part B. The higher order closure dispersion 

15. J. L. Lumley, ‘Computational modeling of turbulent flows’, Ado. Appl. Mech., 18, 123-176 (1979). 
16. C. duP. Donaldson, ‘Construction of a dynamic model of production of atmospheric turbulence and the dispersal of 

atmospheric pollutants’, in P. A. Haugen (ed.), Workshop of Micrometeorology, American Meteorological Society, 
Boston, MA, 1973, pp. 313-392. 

17. W. S. Lewellen and M. Teske, ‘Prediction of the Monin-Obukhov similarity functions from an invariant model of 
turbulence’, J. Atmos. Sci., 30, 1340-1345 (1973). 

18. P. E. Long and D. W. Pepper, ‘An examination of simple numerical schemes for calculating scalar advection’, J. Appl. 
Meteorol., 20, 146-156 (1981). 

19. G. R. Carmichael, L. K. Peters and T. Kitada, ‘A second generation model for regional-scale transport/chem- 
istry/deposition’, Atmos. Enuiron., 20, 173-188 (1986). 

20. D. P. Chock, ‘A comparison of numerical methods for solving advection equations-111’, Atmos. Enoiron. A, 25, 

21. J. Bartinicki, ‘A simple filtering procedure for removing negative values from numerical solutions of the advection 

22. J. C. Wyngaard and 0. R. Cote, ‘The evolution of a convective planetary boundary layer-a higher-order-closure 

23. G. E. Willis and J. W. Deardorff, ‘On the use of Taylor’s translation hypothesis for diffusion in the mixed layer’, 

methodsjuids, 12, 179-195 (1991). 

Boundary Layer Meteorol., 10, 69-90 (1976). 

model’, Atmos. Enuiron. A,  24,2441-2455 (1990). 

853-871 (1991). 

equation’, Enuiron. Sofw. 4, 187-201 (1989). 

model study’, Boundary Layer Meteorol., 7,289-308 (1974). 

Q. J .  R.  Meteorol. SOC., 102, 817-822 (1976). 


